Exercise 72

a. Graph the functions $f(x)=3 /(x-1)$ and $g(x)=2 /(x+1)$ together to identify the values of x for which

$$
\frac{3}{x-1}<\frac{2}{x+1}
$$

b. Confirm your findings in part (a) algebraically.

Solution

The aim is to find the values of x for which $f(x)<g(x)$.

$$
\begin{gather*}
f(x)<g(x) \\
\frac{3}{x-1}<\frac{2}{x+1} \\
\frac{3}{x-1}-\frac{2}{x+1}<0 \\
\frac{3(x+1)}{(x-1)(x+1)}-\frac{2(x-1)}{(x-1)(x+1)}<0 \\
\frac{3(x+1)-2(x-1)}{(x-1)(x+1)}<0 \\
\frac{x+5}{(x-1)(x+1)}<0 \tag{1}
\end{gather*}
$$

The critical points are $x=-5, x=-1$, and $x=1$. Partition the number line at these values of x and test a number within each interval to see if inequality (1) is true or false.

Therefore, the values of x for which $f(x)<g(x)$ are

$$
\{x \mid x<-5,-1<x<1\} .
$$

This is confirmed in the graph of the two functions versus x.

